International student study guide
ANU has students from 75 countries (ANU Insight)

Ranked #1 in Australia and #20 in the world for graduate employability (Times Higher Education 2021)

Ranked #1 in Australia and #30 globally (QS 2023 rankings)

5-star rating for staff-to-student ratio (Good Universities Guide 2020)

More than 88% of ANU academics hold a PhD degree

Welcome

Our facilities

Clubs and societies

Student ambassadorship

School of Engineering

School of Computing

School of Cybernetics

Study engineering

Study computing

Study cybernetics

How to apply

PhD and research

All information in the guide is correct at time of printing (June 2023). Please visit the website for latest information: cecc.anu.edu.au
As one of the great universities of the world, The Australian National University (ANU) is driven by a culture of excellence in everything we do. Our lived experience is increasingly one of large-scale systems of people, whose actions and interactions are influenced by our digital, physical and biological environment. The ANU College of Engineering, Computing and Cybernetics (CECC) hosts three of the key disciplines necessary to help us design, build, regulate and secure the future.

CECC brings together expertise in social, technical, computational, ecological and scientific systems to build a new approach to systems design and build new national capabilities in data driven policy and business development. Our researchers and academics are solving the world's most complex challenges. You will be inspired to become a problem finder, comfortable with ambiguity and complexity as it applies to engineering, computing, and cybernetics.

CECC undertakes research and provides education in the broad disciplines of engineering, technology and computer science. You will join a vibrant and diverse community of more than 3,000 students, staff, and visitors. Our College comprises three schools: the School of Computing, School of Cybernetics, and School of Engineering, supported by the Professional Services Group.

Our College at a glance:

- **Ranked #21** in the world in Automation and Control (Global Ranking of Academic Subjects 2022)
- ** Ranked #51** in the world in Computer Science & Information Systems courses (QS 2022 rankings)
- ** Ranked #55** in the world for Electrical and Electronic Engineering (QS 2022 rankings)
- ** Ranked #64** in the world in the area of Engineering & Technology (QS 2022 rankings)
Our facilities

Learn about the things you’ll find while studying here.

ANU MakerSpace

The ANU MakerSpace has a wide range of tools and appliances available, including power tools, 3D printers, laser cutters, soldering and testing equipment.

The space can be used for education, research, and even personal hobbies.

MakerSpace is available to all our staff and students to experiment, investigate, prototype and solve problems.

Solar car

The ANU Solar Racing team are a group of passionate students dedicated to promoting sustainable innovation and renewables in our community and beyond.

Each year, they compete in the Bridgestone World Solar Challenge, where teams from around the world operate vehicles powered entirely by the sun along a 3,000km outback track from Darwin to Adelaide.

Their latest 3rd generation solar car features a lightweight carbon-fibre, trimaran-style chassis and is powered by a 98% efficient motor that weighs only six kilograms.

Gadi supercomputer

ANU is home to Gadi, a high-powered supercomputer at the National Computational Infrastructure (NCI) that is used by researchers across the University and country.

Australian researchers can access Gadi from anywhere in the world, at any time of day. Running 24 hours a day, seven days a week, Gadi is the underpinning infrastructure for much of the Australian scientific community.

Solar simulator

This high-flux solar simulator is ideally suited for laboratory scale testing of high-temperature solar thermal and thermochemical components and systems.

It supports research in radiating reactive flows and provides up to 20kW of radiation with peak heat flux up to about 10 MW/m². The flux can be further augmented with secondary optics.

The solar thermal capability and expertise at ANU can simulate similar heat flux conditions for high-speed spacecraft entry. Think of the Moon, Mars and beyond!
Escape Room
One room, 60 minutes, five puzzles and the only way out is to solve them. Allows participants to immerse themselves in simulated worlds where teamwork is essential in solving a series of riddles before time runs out.

Originally designed to teach advanced computing concepts, the Escape Room can be customised for other domains such as medicine or law, and can be designed to encourage specific skills such as leadership or flexible thinking.

Now open to the public, the Escape Room is a destination for high school excursions and local businesses seeking team-building retreats.

Big Dish
The ANU Generation II Big Dish solar concentrator is the world’s largest paraboloidal dish solar concentrator, with 489m² of mirror aperture area.

It produces an average concentration of 2,100 suns over a disk with diameter 530mm, with a peak concentration of 14,000 suns.

The ANU prototype delivers experimental data to investigate energy conversion processes, inform design improvements, and support efforts to licence and commercialise the technology.

Robotics and drones
We conduct fundamental research for unmanned vehicle technologies, particularly aerial robots.

We are co-located with the Computer Vision, Networked Systems and Quantum Cybernetics research areas, creating a dynamic environment that supports breakthrough interdisciplinary research.

We have cutting-edge flying facilities and rapid prototyping equipment.

Solar research facilities
Solar photovoltaics (PV) research at ANU is at the global cutting edge. It spans the entire spectrum of solar electricity technologies — from solar forecasting, to fabricating high-efficiency PV cells, to integrating renewables with storage capacity into the grid. Our world-leading silicon solar cell research includes advanced defect characterisation, surface passivation, optoelectronics and manufacturing.

ANU solar laboratories and facilities enable the fabrication and characterisation of high-efficiency silicon and perovskite solar cells. We also maintain tools for state-of-the-art laser processing, industrial solar cell manufacturing and rapid-throughput characterisation.
Clubs and societies

Meet some of the people you’ll find while studying here.

ANU Rocketry

ANU Rocketry is a student-led initiative that provides ANU students with hands-on experience in large scale engineering projects in the aerospace industry.

Their ongoing mission is to design, simulate, develop and produce high-powered rockets that will launch to 10,000ft and 30,000ft in a safe and accurate manner.

ANU Rocketry’s goal is to attempt a space launch in 2025 and become the first Australian university to complete a space flight.

ANU Fifty50

CECC is a proud partner of ANU Fifty50, a student-led organisation which promotes gender equity in science, technology, engineering, and maths within the ANU.

Fifty50 strives to close the gender gap in STEM, to ultimately achieve gender equity through a strengths-based approach that includes mentoring programs, increasing the visibility of role models, engaging the wider community in STEM gender equity, and advocating for policy change.

ANU Formula Sport

ANU Formula Sport is an interdisciplinary team driven by the goal of designing, building, and racing a formula-style car for the annual Formula Society of Automotive Engineers (FSAE) Competition.

The competition attracts a variety of both national and international student teams who compete in a diverse range of technical and business events filled with strategising and quick problem solving.

No matter their level of expertise or background, they strive to incorporate diversity, inclusion, and cohesive learning in their practices.

Robogals Canberra

Robogals is an international, not-for-profit student-led organisation which aims to inspire, engage and empower young women to pursue careers in STEM fields.

They deliver fun, engaging workshops for local and regional primary, high school and college students.

Our dedicated university student volunteers are often pursuing a variety of STEM degrees and are provided with the necessary training to teach our workshop activities and interact with school groups.
Student ambassadorship

Student ambassadors are a vital part of the College's health. They provide support to new students as they enrol at ANU, help out during outreach events and maintain a friendly face in the classes you’ll take.

Each year the College hires new ambassadors, providing some early career experience in the College environment as well as creating strong bonds between you and your classmates.
School of Engineering

The School of Engineering at ANU brings together a diverse and welcoming community that is motivated to seek “wicked problems”. We connect divergent thinkers, to explore and pose solutions, that cross the traditional interdisciplinary and global boundaries. We have evolved from our foundational strength in systems thinking, reaching beyond traditional engineering fields.

This systems approach embraces our core strengths and is shaped around the School’s five focus areas: Aerospace Engineering, Energy Engineering, Environmental Engineering, Information and Signal Processing, and Mechatronics. Join us in our fundamental quest of discovery and passionate pursuit of knowledge that goes beyond our lived world.

Adaptability with Systems Engineering

Our unique systems engineering approach will equip you with sought after skills. As a qualified Systems Engineer, you will be able to apply your expertise across a diverse range of professions and organisations such as Defence and government, tech and startups, finance, consulting, communications and media, and many more.

ANU Systems Engineering is designed to give you a leg up in employability. It teaches you to work cross-disciplinary from the start, and through to the end. These skills are vital for the emerging opportunities you’ll find in the contemporary workforce, wherever you go.

Our graduates are the most capable of bringing the strengths out of any engineering discipline, while also applying their expertise in their chosen field. Systems Engineers are the real-world problems solvers, innovators and thought-leaders. Graduates like this are both needed, and in high demand.

Careers in engineering

Engineering careers are diverse and in demand in Australia and overseas. At ANU, you will develop skills and abilities that are highly sought after in engineering and other organisations.

Thanks to the unique interdisciplinary approach taught in systems engineering, many of our graduates quickly progress to senior roles. Further, the advanced nature of our specialised and Research and Development programs ensures those looking to undertake postgraduate research can move into academia after graduating.

Our engineering degrees have a strong professional focus leading to roles as an Accredited Engineer in industry. Due to this, engineering at ANU is often considered as a springboard into the wider corporate world and our graduates find work in many leading organisations such as:

- ABB
- Accenture
- Department of Defence
- CEA Technologies
- Cochlear Limited
- Energy Australia
- Ford
- GHD
- IBM
- Northrop Consulting Engineers
- Qantas
- Telstra
- Thales
- Toyota

Capstone Design Project

Capstone Design Project is the capstone group project course in the engineering degree at ANU. Capstone exposes students to an authentic engineering-based experience, both in preparing students to have the autonomy they will require to be graduate engineers and giving students the experiences and skills they need to be attractive to a variety of graduate jobs.
Bachelor of Engineering (Honours)

Built on a Systems Engineering framework, the Bachelor of Engineering (Honours) will teach you how engineering disciplines work together. It’s an engineering degree designed for the future.

Want to make a difference to society, or solve some of the world’s largest problems? Would you like to make solar energy technology more efficient, invent the next generation of smartphones or create materials that support the growth of human cells? If you’re creative, enjoy teamwork and mathematics or science - then engineering could be for you.

Our Bachelor of Engineering (Honours) teaches students to become problem finders in a fast-growing industry, where design solutions and innovative thinking are vital. This degree boasts many unique characteristics, but best of all, it is built on a ‘systems engineering’ framework, where you will learn how engineering disciplines work together. Our state-of-the-art education experience ensures you will be able to design, analyse and manage the complex systems of the future.

The first two years is common for all students. You’ll be exposed to many engineering disciplines, before specialising in your chosen field. After that, you can choose to specialise in areas such as electronics & communications, mechatronics, renewable energy, or environmental or aerospace systems. You can also combine your engineering program with another degree at ANU in a Flexible Double Degree to graduate with two qualifications.

Bachelor of Engineering (Research & Development) (Honours)

Our Research & Development (R&D) programs have an innovative structure, allowing you to conduct research projects throughout your degree.

Stand out with your capacity for innovation. You will study engineering fundamentals while being immersed in a research area of your choice. This degree is designed for high achieving students. It will allow you to excel in your career, make a tangible difference to society and help solve some of the world’s largest problems.

In this program you will undertake advanced courses. You will receive unique opportunities to complete research projects alongside our world-class academics.

From the second year, these research projects will form part of your coursework, exposing you to cutting-edge research. You’ll get a taste for what it’s like to undertake research while completing a degree that will also perfectly position you for work in industry. We are the only university that offers undergraduate Research and Development programs in Australia.

We offer pathways into Research and Development. If you start in a Bachelor of Engineering (Honours) and achieve a High Distinction average in your first year, you may be eligible to transfer into a Research and Development degree in your second year.

Students interested in research can also undertake Summer Research Scholarships or voluntary work with academics.
Bachelor of Engineering (Honours) in Software Engineering

Built on a multidisciplinary systems approach, the Bachelor of Engineering (Honours) in Software Engineering will prepare you to design and build systems that influence everyday life.

The unique systems engineering approach covers both the technical aspects of professional practice, innovation and research, as well as the complex socio-technical context of everyday applications.

You will apply your lived experience and knowledge to explore approaches ranging from uncertainty and risk, design, modern management practices, ethics and communication.

Matilda
Bachelor of Engineering (Honours) / Bachelor of Science

“During my studies I had the opportunity to work with Project Everest Ventures in Timor-Leste on a solar-panel project in the rural and urban community. Getting to work with other engineering and business students from across Australian universities on a project in a different country gave me so much knowledge and really changed my perspective on what I want from a career in engineering.”

Master of Engineering in Electrical Engineering

Discover the broad area of electrical engineering with courses in systems engineering, electronics, telecommunications, and control systems. Built on the ANU interdisciplinary engineering focus and research expertise, this program addresses complex multidisciplinary problems and provides advanced technical knowledge.

Vaibhav
Master of Engineering in Electrical Engineering

“My experience at ANU in this diverse program has been a thrilling ride. The program has allowed me to apply my Electrical Engineering knowledge in more advanced ways, complementing my experience in Power systems in India. The program has presented me with numerous chances to collaborate with people from diverse backgrounds on various projects and assignments, sharing experiences and enhancing my problem-solving abilities.”
Master of Engineering in Renewable Energy

This program will provide you with the expertise to have an impact in the rapidly-growing renewable energy industry. You will have an opportunity to develop the skills to address complex issues on a global scale and technical knowledge in renewable energy.

A compulsory core focuses on advanced engineering professional development and specialist knowledge in energy resources (renewable and non-renewable) and integration of renewable energy. You will also complete courses specifically focused on the most important renewable technologies such as solar and wind.

Samuel
Program Manager
Lawrence Berkeley National Laboratory, Berkeley, California.
Master of Engineering (Renewable Energy) ’11

“ANU provided me with a world-class university education, the prestige of the finest university in Australia and the opportunity of working with experts in the renewable energy space. I am still in touch with teachers and other friends I have made during my time at university.”

Master of Engineering in Mechatronics

Our mechatronics program will show you how mechatronics, electronics and computing combine to make mechatronic systems with vast applications such as space, medicine, transport and more. Explore how automation and computer vision are changing the way we perceive technology and everyday objects.

Pankhuri
Operations Analyst, Seeing Machines
Master of Engineering in Mechatronics

“As a Mechatronics graduate from ANU, I was able to gain a deep understanding of mechanical, electrical, and computer engineering. The hands-on experience and practical skills I learned have been invaluable in my career as a robotics engineer. I highly recommend this program to anyone interested in the field.”

CRICOS: 077326G
Learn more:
The School of Computing has a strong foundation in computing and information sciences at ANU. We are a transformative centre for research in artificial intelligence and machine learning, computer systems and software, and theoretical foundations of computing. We span canonical and leading-edge computing, connecting decades of computer science methodologies with modern data and computational science. Our mission is motivated by the need to design, drive and sustain strategic activities via five broad focus areas: Computing Foundations, Computational Science, Intelligent Systems, Data Science and Analytics, and the Software Innovation Institute.

Industry, business and government organisations engaging and collaborating with transdisciplinary teams of young researchers and professionals to develop, prototype and launch real solutions. TechLauncher is an initiative which enables folks at ANU to develop and exhibit research and professional skills while bringing great ideas to life and positively impacting society.

Alongside practicing and developing discipline specific competences in a collaborative project context, skill set development includes communication and stakeholder management, critical thinking, design, teamwork, time management and a diverse range of other valuable skills and competencies sought by investors, colleagues, and employers.

Computing jobs are currently projected to be amongst the fastest growing occupations of our time - so there is no shortage of jobs. This degree can be used to access a corporate career, as well as a path to further academic study such as a PhD.

Graduates are ideally positioned to take on challenging roles in their chosen sectors and become leaders in the ICT industry. They can work across a range of industries in a variety of roles, including:

- Data Mining Specialist
- Big Data Analyst
- Human-Computer Interaction Specialist
- Software Developer
- Embedded systems developer
- Network Architect
- Systems Analyst
- Computer Engineer
- Advanced Software Solutions Engineer
- Software Architect

Our graduates work in many organisations including IBM, Google, Microsoft, Yahoo, Intel, Price Waterhouse Coopers, Accenture Australia, Bloomberg, National Australia Bank, Citigroup, Deloitte, Unisys and the Australian Government, as well as in academia.
Bachelor of Computing

Join the revolution, in a truly globalised and fast changing industry.

Computing is everywhere—from your entertainment to your gadgets. It is changing the way we live, learn, work and even socialise. If you are interested in driving this exciting revolution, in a truly globalised and fast changing industry, this program is for you.

You will receive a strong grounding in computing fundamentals to tackle the progressive nature of technology. With Computing as an intrinsic part of all industries, knowledge of software development and information systems is highly sought after by the best employers.

CRICOS: 112692B Prerequisite: Advanced Maths

Learn more:

Septian
Bachelor of Computing

“The Bachelor of Computing has opened my eyes to the multiple pathways in the field of computing, from the typical programming side to the business side of it. Combined with the flexibility of this degree, it has allowed me to explore and pursue what I truly want to learn.”

Bachelor of Advanced Computing (Honours)

This is a unique, interdisciplinary program that will prepare you to be a future leader of the information and communications technology (ICT) revolution.

There is hardly any aspect of modern society untouched by the computing revolution. Some of the biggest challenges we face today will all be solved with an ICT component, whether it is in predicting efficiencies in renewable energy systems or using machine learning to diagnose illnesses.

In this program you will study advanced computing techniques and complete a unique specialisation. You will learn advanced computing techniques and develop exceptional professional skills including communication and teamwork.

CRICOS: 077939A Prerequisite: Advanced Maths

Learn more:

Tina
Bachelor of Advanced Computing (Honours) / Bachelor of Science

“At ANU there’s a real multidisciplinary and big picture research focus, I think there’s actually a lot of humanity in computer science, which you don’t realise until you look beneath it.”
Bachelor of Advanced Computing (Research & Development) (Honours)

Our Research & Development (R&D) programs have an innovative structure, allowing you to conduct research projects throughout your degree.

Be unique and get innovative. This interdisciplinary program is designed for high achieving students and will prepare you to be a future leader of the information and communications technology revolution.

In this program you will learn advanced computing techniques and have the opportunity to complete a unique specialisation. You will develop exceptional professional skills including communication and teamwork, and the program can be a great pathway to a PhD.

This program features an accelerated mode of learning, with advanced courses. You will receive unique opportunities to complete research projects alongside our world-class academics.

From the second year, these research projects will form part of your coursework, exposing you to cutting-edge research. You’ll get a taste for what it’s like to undertake research while completing a degree that will also perfectly position you for work in industry. We are the only university that offers undergraduate Research and Development programs in Australia.

You can combine a Research and Development program in a Flexible Double Degree.

We offer pathways into Research and Development. If you commence in a Bachelor of Advanced Computing (Honours) and achieve a High Distinction average in your first year, you may be eligible to transfer into a Research and Development degree for second year. Students interested in research can also undertake Summer Research Scholarships or voluntary work with academics.

Bachelor of Applied Data Analytics

Data skills are in demand. Develop interdisciplinary knowledge across computing, statistics and social science.

The Bachelor of Applied Data Analytics is an interdisciplinary degree designed to meet the demand in the modern workforce for data analytics. You will learn to inform and deliver high-quality, data-informed decision-making. This multi-disciplinary degree includes courses in computing, statistics, and social science. These highly sought-after skills can be applied in careers across business, government, and community— including finance, health, and national security.

Bachelor of Applied Data Analytics

CRICOS: 094621D Prerequisite: Assumed Knowledge - Maths

“Applied data analytics is perfect for people who are eager to learn and have broad interests. It combines sciences with arts to solve problems. The versatility of my degree has allowed me to discover what really sparks my passion, which is solving societal issues using holistic approaches. I’m combining the study of cultural background, qualitative data collection, and analytical statistic programming skills.”

Naomi
Bachelor of Applied Data Analytics

CRICOS: 085359K Prerequisite: Advanced Maths

Ethan
Bachelor of Advanced Computing (Research & Development) (Honours)

“My degree enables me to try a lot of different research fields before choosing my honours. This is great for me, because I’m interested in multiple disciplines, like artificial intelligence, machine learning, cyber, data science and logic. You get the opportunity to explore what interests you!”

International guide
Master of Computing

This course suits both computing graduates, and those of other disciplines. Learn best practice in computing with cutting-edge courses designed to produce computing and IT professionals of the future.

Master of Computing (Advanced)

Deepen your existing knowledge of computing with this research-focused degree. You will be exposed to best-practice research methods and have an opportunity to specialise in a computing topic that has a high impact on human futures.

Wilson
Master of Computing

“Automation, Robotics, Intelligence: Computer Science is on the cusp of a technological revolution. My favourite class in Machine Learning includes challenging materials, is taught by an excellent lecturer, and is an interesting discipline from both a research and future career perspective.”

CRICOS: 078940M

Learn more:

Vidhu
Master of Computing (Advanced)

“This program has allowed me to explore my interests in various domains and I am fortunate enough to have had the opportunity to work on a research project this semester. ANU has provided me with the golden platform to enhance my skills and abilities, not only professionally but also on a personal level, and I feel extremely grateful for this opportunity.”

CRICOS: 085934F

Learn more:
Master of Applied Data Analytics
The Applied Data Analytics programs are designed to develop interdisciplinary knowledge across three foundational academic areas: computing, statistics and social science. Learn how data analytics can provide the evidence to improve social and business outcomes.

ChinAnn
Data Science Intern, PETRONAS Digital, Master of Applied Data Analytics
“Completing the Master of Applied Data Analytics program equipped me with the essential skills and knowledge to excel in the field of data science. I am continually applying the techniques and methodologies learned during the program. I am grateful for the rigorous curriculum and supportive faculty that prepared me for a successful career in this rapidly evolving field.”

Master of Machine Learning and Computer Vision
Explore the revolutionary fields of artificial intelligence, machine learning and computer vision with this future-focused degree. Understand and solve computer vision and visual perception problems using state-of-the-art computer vision techniques. You will also design and implement new concepts and apply advanced methods to real-world machine learning applications.

Tanya
Machine Learning Engineer, Crayon AI Center of Excellence, Master of Machine Learning and Computer Vision
“The more I delved into machine learning, the more I realised that I had found something to keep challenging me for the rest of my life. I also saw the potential impact of this technology. I could see myself solving problems I have always wanted to solve.”
The School of Cybernetics is a non-traditional school based at ANU, making space for different futures. Futures that consider the environment, the people within it, and how technology can help, rather than harm. Futures that are safe, sustainable and responsible.

We are establishing cybernetics as an important tool for navigating major societal transformations, through capability building, policy development and safe, sustainable and responsible approaches to new technological systems, like Artificial Intelligence and the metaverse. Our goal is to build a new generation of practitioners who will shape a future that we want through and with technology.

Help shape the future through and with technology

Cybernetics is the study of big dynamic systems, like the internet, the environment, governments, cultures and even our own bodies. Cybernetics is also about building new systems that bring together people, technology and the environment.

Are you interested in safe and sustainable futures? Are you thinking beyond design and development of technologies? If this sounds like you, check your eligibility for our world-first postgraduate programs.

Careers in cybernetics

Our alumni have gone on to senior leadership roles in digital, data, and AI in Federal and State Governments, digital non-profits and industry, as well as on to PhDs with top global universities.

Master of Applied Cybernetics

The ANU Master of Applied Cybernetics is the first of its kind and the only masters program in applied cybernetics in the world. It offers a once-in-a-lifetime opportunity to be a part of a new generation of practitioners with the skills and knowledge we need to help ensure new technological systems are safe, sustainable and responsible.

The Master of Applied Cybernetics is a 1 year full-time (or equivalent part-time) degree, comprised of four main courses that interact and reinforce each other. Entry is by competitive application only, and the number of students is strictly limited. We welcome candidates who have pursued non-traditional academic pathways. Past students come from diverse backgrounds; including lawyers, policymakers, start-up founders, activists, journalists, and artists.

Master of Applied Cybernetics (Advanced)

The Master of Applied Cybernetics (Advanced) allows students to complete a larger research or industry project, extending the total duration of their program to 1.5 years full-time. The opportunity to conduct research through the cybernetic lens is a powerful component that will have you excelling in the world-leading thought that the program teaches.

CRICOS: 103368M Learn more: CRICOS: 103369K Learn more: CRICOS: 103369K

Julian

Master of Applied Cybernetics

“Through the masters degree, I was able to further develop my own thinking about the challenges we face in relation to technology and the unique opportunities Applied Cybernetics provides to make meaningful contributions to this work.”
Study engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Engineering (Honours)*</td>
<td>4 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Engineering (R&D) (Honours)*</td>
<td>4 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Engineering (Honours) in Software Engineering*</td>
<td>4 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Master of Engineering in Electrical Engineering</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: study in a related cognate discipline, including</td>
<td></td>
</tr>
<tr>
<td>Electrical and/or Electronics, Telecommunications/Communication,</td>
<td></td>
</tr>
<tr>
<td>Power, Information Engineering, Automation, Control, Microelectronics,</td>
<td></td>
</tr>
<tr>
<td>Internet of Things, Optical/Photovoltaics, Biomedical Engineering.</td>
<td></td>
</tr>
<tr>
<td>Master of Engineering in Renewable Energy</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: study in a related cognate discipline, including</td>
<td></td>
</tr>
<tr>
<td>Electrical, Electronic, Photovoltaics, Renewable Energy Engineering,</td>
<td></td>
</tr>
<tr>
<td>Energy, Power Engineering, Mechanical Engineering, Materials</td>
<td></td>
</tr>
<tr>
<td>Engineering.</td>
<td></td>
</tr>
<tr>
<td>Master of Engineering in Mechatronics</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: study in a related cognate discipline, including</td>
<td></td>
</tr>
<tr>
<td>Electrical and/or Electronics, Automation, Control, Intelligent</td>
<td></td>
</tr>
<tr>
<td>Systems, Robotics, Information Engineering, Biomedical, Mechatronics,</td>
<td></td>
</tr>
<tr>
<td>Mechanical, Manufacturing, Optoelectronics, Computer Engineering,</td>
<td></td>
</tr>
<tr>
<td>Communications/Telecommunications.</td>
<td></td>
</tr>
</tbody>
</table>

Flexible Double Degree options

Mix your degree to match your passion. With a Flexible Double Degree from ANU you can satisfy your curiosity and keep your career options open. With over 750 possible undergraduate degree combinations, you'll find your perfect match.

- Study two Bachelor degrees at the same time and graduate with two qualifications.
- Two qualifications mean a clear advantage when applying for jobs and could even double your employment prospects.

For more information on Flexible Double Degrees go to programsandcourses.anu.edu.au.

Study computing

<table>
<thead>
<tr>
<th>Course</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Computing</td>
<td>3 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Advanced Computing (Honours)</td>
<td>4 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Advanced Computing (R&D) (Honours)</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: Advanced Maths.</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Applied Data Analytics</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: Assumed knowledge Maths.</td>
<td></td>
</tr>
<tr>
<td>Master of Computing</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: Cognate disciplines not required.</td>
<td></td>
</tr>
<tr>
<td>Master of Computing (Advanced)</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: study in a related cognate discipline, including</td>
<td></td>
</tr>
<tr>
<td>Master of Applied Data Analytics</td>
<td>1.5 years</td>
</tr>
<tr>
<td>Requirements: Cognate disciplines not required.</td>
<td></td>
</tr>
<tr>
<td>Master of Machine Learning and Computer Vision</td>
<td>2 years</td>
</tr>
<tr>
<td>Requirements: study in a related cognate discipline, including</td>
<td></td>
</tr>
<tr>
<td>Electrical and/or Electronics, Computer Science, Software Engineering,</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering, Automation, Mechatronics, Telecommunications, Mathematics, Physics, Bioinformatics, Control systems and engineering, Statistics, Artificial Intelligence, Biomedical Science, Optical Engineering.</td>
<td></td>
</tr>
</tbody>
</table>

Academic requirements

Your current GPA will be converted to an ANU grade point average (GPA) scale of 7.0, taking into account a wide range of factors. This includes your home university ranking, grading system, geographical region, and other considerations.

You can check the entry requirements for your degree at: programsandcourses.anu.edu.au.

English language requirements

All applicants will also need to meet our University's English language requirements. You can meet these based on prior study, citizenship status, or through an English language test.

Find out more at: study/apply/english-language-requirements
Study cybernetics

Master of Applied Cybernetics

Requirements: A Bachelor degree with Honours, Graduate Diploma, or Higher Degree (in any discipline) with a minimum GPA of 5/7, a minimum of 3 years of professional experience in an area of relevance to the new branch of engineering and an interest in participating as a co-investigator throughout the Masters.

1 year

Master of Applied Cybernetics (Advanced)

Requirements: A Bachelor degree or international equivalent in a cognate discipline with a minimum GPA of 6/7 and a minimum of 3 years full-time, relevant work experience at ANZSCO Skill Level 1.

1.5 years

Cognate disciplines:

- Information and computing sciences; engineering; technology; studies in human society; psychology and cognitive sciences; law and legal studies; studies in creative arts and writing; education; economics; mathematical sciences; physical sciences; chemical sciences; earth science; environmental sciences; biological sciences; agricultural and veterinary sciences; medical and health sciences; built environment and design; commerce, management, tourism and services; language, communication and culture; history and archaeology; philosophy and religious studies.

How to apply

ANU admits students twice a year: in Semester 1 (February) and Semester 2 (July)

You can apply at any time throughout the year. Most applications submitted before the 15th day of each month will be considered for an offer on the 1st day of the following month. You will have two months to accept your offer from ANU.

You can only apply for one program, although you can change your preference during the application process. The change of preference can be done between the 9th and 15th day of each month.

As an international student, you can apply directly to the ANU or use one of our official international agents located around the world. If you are a student from one of our partner universities, email study.cecc@anu.edu.au to confirm the best way to apply to ANU and be assessed for credits.

Ready to apply?

You can only apply for one program, so check our catalogue to choose the best degree for you and view any requirements.

programsandcourses.anu.edu.au

When you have selected your program, follow the ‘Apply’ button to start your application through our online application portal at:

apply-international.anu.edu.au/anuint/

You need to meet the academic prerequisite and cognate requirements for your program, as well as the University’s English language requirements, to receive an offer for the round. We will not issue conditional offers.

Your application will be ranked against other candidates applying for the same program. Learn more about the ANU assessment process at anu.edu.au/study/apply/international-applications-undergraduate-and-postgraduate/assessment

For more information on applying, visit anu.edu.au/study/apply
PhD and research

At the ANU College of Engineering, Computing and Cybernetics, you will join a dynamic and pioneering research environment where you can pursue your interests alongside some of the world’s brightest and most innovative researchers. You’ll get an opportunity to collaborate with an extensive network of academic, government, and industry partners in Australia and worldwide, and gain the skills to enable change in today’s complex world.

Research at the College affords opportunities to undertake study in several research areas—each offering dynamic and diverse research opportunities producing internationally significant outcomes. Research is conducted in our three Schools: the School of Computing, School of Cybernetics, and School of Engineering.

We offer two Higher Degree Research (HDR) degrees:

- Doctor of Philosophy (PhD)
- Master of Philosophy (MPhil)

Both are advanced research-focused degrees that produce high-quality original research under the supervision of world-class academics and vibrant intellectual leaders.

Jess
User Experience Researcher Google, Seattle
PhD in Computer Science ’15

“Google is a fast-paced environment, which requires you to be really good at communicating. Having a rich social life at ANU, being involved in clubs and working in team environments has differentiated me from graduates of other universities.”

Ellen
PhD in Engineering

“I choose to do my PhD at ANU because of the supportive staff, unique research areas and love of Canberra. I’ve been amazed at how many opportunities are available to PhD students. I think it will be a challenge to fit them all in my time here. My undergraduate studies bred a love of research and the ability to pursue my passion in engineering education was a wonderful surprise.”

Ned
Master of Applied Cybernetics ’21.
Undertaking a Doctor of Philosophy (PhD) in Cybernetics

“I learnt a lot in the year of my Masters. We had computational neuroscientists, we had computer scientists, engineers, lawyers, artists, people from government and policy-making—all with different perspectives. There was an interest in learning from each other’s perspective, not just debating across one another. That was the most exciting thing about that year.

“You will know if Cybernetics is right for you if you’re thinking about the questions beyond just the design and development about the immediate systems in front of you if you’re thinking about how that interacts with the world, people and the environment of the ecology.”
Contact us

cecc.anu.edu.au
study.cecc@anu.edu.au
WhatsApp: +61 417 815 498
@anucecc

TEQSA Provider ID: PRV12002 (Australian University)
CRICOS Provider: #00120C | ABN: 52 234 063 906